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Outline 

• Importance of restoring agricultural  peatlands 
and drained wetlands  

• Conceptual C credit accounting plan USFWS 

• Experimental site description 

• Questions  

– Does hydrologic restoration increase GHG flux? 

– Does restoration increase C and N Sequestration? 

– What controls C sequestration ? 

• Conclusions 





(325 Tg C) 



Drained and converted organic soils in agriculture that have potential for increased greenhouse gas losses  

(unpublished map from NC RAMSAR working group)  
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Wetland Restoration 
 

Recommended expansion of restoration at 
Pocosin Lakes NWR 

 
 
 

 

Why? 
 

• Peatland restoration allows 

substantive C and N 

sequestration benefits 
 

• Refuge habitat improvement 
 

• Reduces nutrient runoff to 
estuaries  

 

 
 

Photo: S.Ward, USFWS 







(Peat Fire June –September 2008) 



(How much C was lost?) 



(NC Pocosin Fire  2008) 

 

 

    9.9 Tg C lost  

16,814 ha Burned  

Mickler and Welch 2012 



Large Scale Hydrology-Carbon 

Sequesration  Experiment  

 

Pocosins Lake National Wildlife 

Refuge 

 in 

Coastal NC  
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Gordonia lasianthus 

Pinus serotina 

Zenobia pulverulenta

Pinus taeda

Ilex glabra 

Morella cerifera

Pteridium aquilinum
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  Litter Accumulation Rates in Pocosins by Species & Hydrology Treatments  
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Decomposition rates in drained, restored and reference pocosins 

(Preliminary data from Tim Moore, McGill)  
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- 
-8x 

Incomplete C Budget  

100 Years left 



Does Hydrologic Restoration Alone 
Control GHG Flux? 

&  
  
 Which GHG is the 

Dominant Contributor?  
 





Average By Treatment 
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Wet Dry Comparison of GHG  
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Average By Treatment 
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Drought Effects ? 



Questions 

 

• How  does this peat exist under such low summer 
water tables?  

• What controls CO2 production in unsaturated 
peatlands? Phenolic cpds possible microbial block 
(Bridgham and Richardson, 2003)  

• What are the responses of these peatlands to 
drought and can they resist drought effects? (Wang  
Ho and Richardson 2012) 



Drought  
 Low precipitation, 

drainage for 
agriculture and 
forest 

 Aerobic decay 

 

 More CO2 

Fenner and Freeman, 2011 



 Drought unlocks 
carbon historically 
restored in boreal 
peatland 

 

Fenner and Freeman, 2011 

Generally, such phenomenon occurs in 

saturated peatlands,  

 

However, unsaturated 

peatlands? 
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Figure 3. Temporal variation of CO2 emission during drought incubation of  
peat monoliths from drained, natural and restored Pocosin peatland sites. 

No effects 

(Wang , Ho and Richardson in Prep, Poster 336)  
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Figure 1. Temporal variations of soil moisture (A), soluble and polyphenol (B), 
 labile polysaccharide (C) and phenol oxidase activity(D) during the drought 
 incubation of peat monolith from natural, drained & restored Pocosin sites.  

(Wang , Ho and Richardson in Prep, poster 336) 
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Figure 4. Soluble polyphenol (A) and inorganic nitrogen (B, NH4
++ NOx

-) vs. CO2  

emission during the initial 60-day drought incubation of all peat monoliths 

(Wang , Ho and Richardson in Prep, poster 336)  

 
Phenolics-latch for CO2 production 



Properties of Soil and Plants in the Pocosin Study Sites in Coastal NC 

(Wang , Ho and Richardson in Prep, Poster 336)  



Conclusion and application 
 Build-up polyphenol inhibit CO2 production under drought 

(weakens drought effects) 

 

 Moderate drought might increase C accumulation (similar 
with restored site results) 

 

 Altered species composition caused by drainage or by severe 
drought  results in decreased polyphenol in soil &  increased 
CO2 flux 

 Nitrogen deposition stimulates CO2 flux 



Major Peatlands in the SE  Coastal 

Plain of the U.S. 



Potential Peatland Restoration sites   



Any Questions? 


